
Mangrove Classification and Statistics 

Statistics have been calculated based on individual typological units (See 1., below) and to the 

jurisdictional, regional, and global level. Jurisdiction and region-level statistics are based on the 

sum of the values from the typological units assigned to that jurisdiction or region. Typological 

units have been assigned to the country in which they predominantly located.  

 

1. Mangrove type – Coastal embayments of >1km2 were identified using a modified 

version of the GADM administrative area dataset https://gadm.org/index.html. The 

coastal embayment polygons were classified into one of four groups (delta, estuaries, 

lagoons or bays) based on their geomorphological characteristics. Deltas in mangrove 

areas (n = 81) were identified from those listed in the World Atlas of Mangroves 

(Spalding et al. 2010), The Major River Deltas Of The World (Huh et al. 2004) and Major 

World Deltas: A Perspective From Space (Coleman & Huh 2003). A further 21 deltas 

were identified by examining coastal embayment polygons that had >2 outlets to the 

ocean. Using online sources multiple coastal embayment polygons were merged to 

create a single delta’s extent. Those polygons that we designated as part of deltas were 

removed from the coastal embayment polygon dataset. The remaining coastal 

embayment polygons were then classified as either bays, estuaries or lagoons. The 

classification was based ten variables describing the shape of the polygons, the area of 

their associated hydrological catchment and the amount of precipitation entering the 

catchment and used a random forest classifier (randomForest package; Liaw & Wiener 

2002). Once the coastal embayment polygons had been defined the mangrove polygons 

within the GMW dataset were classified into one of four types, deltaic, lagoonal, 

estuarine or fringing. Further these mangroves polygons were split into individual units, 

for deltaic, lagoonal, estuarine mangroves based on proximity to coastal embayment 

polygons of the same type. The overall extent was created by merging the mangrove 

extents from the GMW 1997, 2007, 2010 and 2016 timesteps. Assigning the mangrove 

polygons to a typological class and an individual coastal embayment polygon followed a 

stepwise procedure based on the proximity of mangrove patches to the coastal 

embayment polygons. Following the stepwise procedure several rounds of visual quality 

assessment and corrections were carried out. The manual interventions following the 

stepwise procedure (N.B. there had be minor manual intervention during the stepwise 

procedure) resulting in variation in the number of polygons assigned to each class 

particularly increasing the amount of lagoonal mangrove. 

2. Maximum Mangrove Area 1996 - 2016 – To determine the maximum mangrove area 

over the past 20 years, timesteps from the Global Mangrove Watch dataset depicting 

mangrove extents from 1996, 2007, 2010 and 2016 were joined via a union. More 

information on Global Mangrove Watch can be found at 

https://www.globalmangrovewatch.org/.  

https://gadm.org/index.html
https://www.globalmangrovewatch.org/


3. Area of Loss was calculated using the Maximum Mangrove Area in the Last 20 Years 

dataset (union of Global Mangrove Watch mangrove extents from 2007, 2010, and 

2016). Areas of loss were defined as extents within that union where no mangroves 

existed in 2016. These areas were summed to create a total area of loss per typological 

unit.   

4. Restorable Mangrove Area was calculated by taking the total area of loss and 

subtracting the area of loss assumed to be converted to either an urbanized area, or an 

eroded area within each typological unit. Mangroves lost to these causes are unlikely to 

offer great scope for restoration due to the likely level of geomorphological and 

hydrological change and the high opportunity costs of converting these areas. Urban 

areas were identified from the Global Urban Footprint dataset which provides the 

extent of built-up areas, defined as man-made building structures with a vertical 

component (Esch et al. 2011, 2017). The data were derived from satellite images mostly 

collected between 2011 and 2012 and available at a resolution of 0.4 arc seconds (~12 

m, near the equator). The urban footprint was intersected with areas of mangrove from 

the loss identified from the union of 1996, 2007, 2010 and 2016 GMW timesteps. Any 

patch of mangrove loss that overlapped the urban footprint, the loss was classified as 

being due to urbanization. Areas of erosion were identified using a combination of three 

data layers, extent of mudflats, extent of bare ground and water occurrence change 

intensity. The extent of global mudflats for the year 2016 was derived from multiple 

Landsat images (N. Murray, unpublished data) and showed areas of mudflat presence at 

a resolution of 1 arc-second per pixel (approximately 30 meters per pixel at the 

equator). The bare ground for the circa 2010 peak growing season was downloaded 

from https://landcover.usgs.gov/glc/. The data were derived from Landsat 7 ETM+ 

cloud-free composites and estimates the minimum percentage of bare ground per pixel 

(Hansen et al. 2013). For this analysis a pixel was classified as bare if it had >= 50% bare 

ground. Data on water occurrence change intensity was downloaded from 

https://global-surface-water.appspot.com/download. Water occurrence change 

intensity shows areas where water occurrence increased, decreased or remained the 

same between 1984-1999 and 2000-2015 (Pekel et al. 2016). Change was computed by 

matching monthly observation in both time periods and is percentage change in 

occurrence between the two time periods. For the analysis, we identified areas that had 

had a 20% or greater increase in water intensity between the two time periods. Areas of 

erosion were identified by overlaying extent of mudflats, extent of bare grounds and 

water occurrence change intensity on top of the areas of loss. Erosion was assumed in 

those loss areas where was water occurrence change intensity was present within a 

100m buffer of the coastline (coastline from a modified version of GADM) or loss areas 

where mudflats were present in 2016. In addition, if loss areas were overlaid by 

combinations of bare ground and water occurrence change intensity, mudflats and bare 

ground, mudflats and water occurrence change intensity, and all three of mudflats, bare 

ground and water occurrence change intensity then this was assigned to erosion. Areas 

https://landcover.usgs.gov/glc/
https://global-surface-water.appspot.com/download


of erosion were removed if they intersected with urban area (see above) or layers 

representing Global Tree Canopy Cover for circa 2010 (Hansen et al. 2013) or Global 

30m Cropland Extent (Gumma et al. 2017; Massey et al. 2017; Oliphant et al. 2017; 

Phalke et al. 2017; Teluguntla et al. 2017; Xiong et al. 2017; Zhong et al. 2017)  Thus, the 

formula for calculating restorable area from loss within a typological unit is: (Total area 

of loss) – (% conversion to urbanization * Total area of loss)– (% eroded * Total area of 

loss).  

5. Degraded Area in mangrove forests was examined via temporal changes in several 

vegetation indices across the period ~1984 - to the present day. Degradation was 

examined for mangroves present in the 2016 timestep of the Global Mangrove Watch 

(GMW) data layer. Given the temporal and spatial scale of the analysis, Google Earth 

Engine was used. Google Earth Engine is a cloud-based geospatial analysis platform, 

housing an extensive data catalogue which can be explored and analysed using a large 

parallel processing system (Gorelick et al. 2017). Google Earth Engine contains analysis 

ready images for the entire Landsat archive (Gorelick et al. 2017). Pre-processed 

atmospherically corrected surface reflectance images from the Landsat 4 and 5 ETM, 

Landsat 7 ETM+ and Landsat 8 OLI/TIRS sensors were used. For each image areas of 

cloud or cloud shadow that might affect the vegetation indices calculation were 

removed using the CFMask algorithm (Foga et al. 2017). The images from each of the 

four Landsat missions were combined into a single collection and for each image four 

vegetation indices were calculated. The Normalized Difference Vegetation Index (NDVI) 

is the normalized ratio of the near infrared (NIR) band which is reflected by vegetation 

and red band which is absorbed by vegetation.  

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

Values range between -1 and +1, with values closer to +1 representing areas of dense 

green leaves. One of the limitations of NDVI is that it is influenced by background soil 

brightness, with higher NDVI values in areas of darker soils (Huete 1988). The Soil-

Adjusted Vegetation Index (SAVI) is a modified version of the NDVI index, designed to 

minimise the soil brightness influence (Huete 1988). 

𝑆𝐴𝑉𝐼 =
(1 + 𝐿)(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿)
 

An adjustment factor (L) of 0.5 was shown to successfully minimise soil brightness 

effects (Huete 1988). The enhanced vegetation index (EVI) was developed to reduce 

influence of atmospheric conditions and decouple the canopy background signal (Huete 

et al. 2002). In addition to the NIR and red bands used in NDVI and SAVI, EVI uses the 

blue band to reduce the impact of atmospheric effects (Schultz et al. 2016).      

𝐸𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝐶1 × 𝑅𝑒𝑑 − 𝐶2 × 𝐵𝑙𝑢𝑒 + L)
 

The coefficient L is the canopy background adjustment and C1 and C2 are used with the 

blue band to reduces aerosol influences in red band (Huete et al. 2002). Values of L = 1, 



C2 = 6, C2 = 7.5, and G = 2.5 were used based on Huete et al. (2002). The Normalized 

Difference Moisture Index (NDMI) is the normalized ratio of the NIR and Short Wave 

Infrared (SWIR) bands.  

𝑁𝐷𝑀𝐼 =
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)
 

SWIR represents changes in vegetation water content and structure of spongy 

mesophyll. The index has been used to assess vegetation moisture condition (Ji et al. 

2011). The overall image collection was split into five timesteps, reference (earliest 

image in the collection – 2000), T1 (2000 – 2005), T2 (2005 – 2010), T3 (2010 – 2015), and 

T4 (2015 – latest image in the collection). Degradation was evaluated at the pixel (30m 

resolution) scale and only Landsat pixels that intersected the 2016 GMW mangrove 

extent were considered. The number of images per pixel in each timestep were 

calculated. Pixels that had fewer than ten images in the reference period were removed 

as were ones where there were fewer than ten images in two of the other timesteps. If 

there were fewer than ten images in just one timestep the vegetation indices from the 

preceding timestep were used. To assess change in mangrove condition, per pixel within 

each timestep three values were calculated, the median, 10 – 90% interval mean and 25 

– 75% interval mean of each of the four vegetation indices. This resulted in 12 

degradation metrics. For each degradation metric the percentage difference of each 

timestep relative to the reference period was calculated. Areas where degradation had 

taken place were identified as those where the vegetation index was >= -40% of the 

reference value in any of the timesteps. To remove areas of regeneration, the T4 value 

relative to the reference was assessed with a >= -20% value suggesting ongoing 

degradation. For a pixel to be classified as degraded, ten out of 12 degradation metrics 

had to have a timestep where the percentage change was >= -40% and zero out 12 

degradation metrics had to have T4 value >= -20% of the reference.  

 

 

Restoration Potential Score and Inputs  

1. Restoration Potential Score ranges from 0 – 100 were a low score represents a typology 

unit that is not a good candidate for restoration and a high score represents a typology 

unit that is a good candidate for restoration activities. The score is calculated based on 

seven variables described below. The variable weightings and the individual category 

scores were derived by an expert panel using a Delphi type approach. The expert panel 

were asked to provide a value between zero and ten for each category in each variable 

in terms of increasing restoration potential. The most important category was given a 

score of ten with the other categories scored relative to this. More than one category 

could be given a score of ten. For the variable weightings the score was again relative to 

each other and could take a value of 0, 10, 20, 30 ,40, 50. A score of 0 meant that at the 

typological unit scale a variable has no importance to mangrove restoration potential. A 



variable scored 20 was twice as important to restoration potential as a variable scored 

10. The first iteration had 10 respondents and the median category scores and variable 

weightings were computed. The respondents were then asked to rescore both the 

categories and variables while considering the current group consensus. The 

respondents were asked to give special consideration to those scores where they were 

an outlier from the group consensus, that is ± one rank from the median score. The 

intent of this follows standard Delphi approaches, where error is reduced by the sharing 

of expertise and the sharpening of definitions. Where respondents felt that the current 

group consensus was incorrect, and they wished to retain the outlier score, they were 

asked to provide anonymous feedback. After the second round of responses (n = 9), the 

median category scores and variable weightings were again computed. The respondents 

were given a final opportunity to re-score the categories and variable weighting based 

on the second-round consensus and the anonymous feedback. The variable weightings 

and the individual category scores were then converted into each typological unit’s 

restoration score using the Simple Multi-Attribute Rating Technique (SMART). In SMART 

individual variable weightings are normalized based on the sum of all variable weighting 

and then multiplied by the category score (divided by 10).  

a. Tidal Range - The extent of tidal flooding and its duration and frequency are 

critical to the survival of mangrove forests (Lewis 2005). These factors are 

controlled by the topography of the site and local tidal characteristic (Friess et al. 

2012). Tidal amplitude data were accessed from AVISO+ products 

(https://www.aviso.altimetry.fr). From this dataset, the tidal amplitude value 

nearest to the mangrove typology centroid was calculated. The mangrove 

typology was classified based on the tidal range (amplitude x 2) as microtidal (0–

2 m, n = 5274), mesotidal (>2–4m, n = 883) and macrotidal (>4m, n = 128). 

b. Antecedent SLR - Antecedent Sea Level Rise (ASLR) data were accessed from 

http://www.esa-sealevel-cci.org/ in the form of regional mean sea level trends 

(Quartly et al. 2017; Sea Level Climate Change Initiative (SL_cci) 2017; Legeais et 

al. 2018). The data are based on altimeter measurements from multiple satellite 

missions and represents regional sea level trends between January 1993 and 

December 2015 (Legeais et al. 2018). Spatial variation in regional sea level trends 

generally ranges between -5 and +5 mm yr-1 around the global mean of 3mm yr-1 

(Legeais et al. 2018). Extreme values (> |5|mm yr-1) observed in the dataset are 

subject to high levels of uncertainty (Sea Level CCI team, pers. comm.), therefore 

values > 5mm yr-1 were truncated to 5mm yr-1. The ASLR value nearest to the 

mangrove typology centroid was calculated. Risk from ASLR was calculated as a 

function of tidal amplitude, where higher values represent a greater risk. Where 

tidal amplitude was zero (n = 24) the ASLR/M2 Tidal Amplitude value was set to 

the ASLR value. Those patches where sea level had declined (n = 52) the ASLR 

risk was categorized as ‘none’. For the remaining patches ASLR risk was grouped 

https://www.aviso.altimetry.fr/
http://www.esa-sealevel-cci.org/


using a k-means cluster (Hartigan & Wong 1979), which categorized the sites as 

being either high (n = 2123) or low risk (n = 4110).  

c. Future SLR - The long-term survival of many mangrove ecosystems is threatened 

by sea level rise (Friess et al. 2012). Changes in sea level have the potential to 

disrupt the balance between the tidal frame and the surface elevation of 

mangrove forests. Mangrove loss may result if future sea level rise (SLR)  

increases the frequency and duration of tidal inundation beyond species 

physiological thresholds (Ball 1988). SLR predictions were accessed from 

http://icdc.cen.uni-hamburg.de/1/daten/ocean/ar5-slr.html. The predictions are 

derived from 21 Coupled Model Intercomparison Project phase 5 Atmosphere–

Ocean General Circulation Models (Church et al. 2013). For the analysis we 

selected the medium-high representative concentration pathway (RCP) scenario 

6.0. The SLR value nearest to the mangrove typology centroid was calculated. 

Risk from SLR was calculated as a function of tidal amplitude, where tidal 

amplitude was zero the SLR/M2 Tidal Amplitude value was set to the SLR value. 

SLR risk was grouped using a k-means cluster (Hartigan & Wong 1979), which 

categorized the sites as being either high (n = 1802) or low risk (n = 4483).  

d. Sediment Change - Areas of high erosion may undermine restoration effort. 

Sediment change may be used as a proxy for upstream hydrological modification 

that may impact restoration efforts. Data on inorganic suspended particulate 

matter concentration (g/m3) were downloaded from the Globcolor website 

http://www.globcolour.info/. The Globcolor project merges outputs from 

different satellite sensors to improve spatial and temporal coverage (ACRI-ST 

GlobColour Team 2017). Two hundred and forty individual processed Level-3 

files representing monthly inorganic suspended particulate matter concentration 

were selected for the period of January 1998 to December 2017 (20 years). 

These data combine measurements from the SeaWIFS, MERIS, MODIS and VIIRS 

satellite missions. Inorganic suspended particulate matter was calculated as the 

difference between total suspended matter and phytoplankton biomass and is 

mostly dominated by mineral matter (Gohin 2011). The inorganic suspended 

particulate matter data were imported into Google Earth Engine and the 

monthly layers were merged into a 240-image stack. The SPM-OC5 algorithm 

used to derive inorganic suspended particulate matter concentration computes 

values ranging between 0 and 100 g/m3 but is only validated for values less than 

50 g/m3 (The GlobColour Team, pers. comm), therefore values above 50 g/m3 

were truncated. Within the image stack, pixels were removed that had fewer 

than 120 records. To determine the sedimentary class of each mangrove 

typology patch, the mean inorganic suspended particulate matter concentration 

value of each pixel within the stack was calculated. To examine trends in 

inorganic suspended particulate matter concentration a linear regression model 

http://icdc.cen.uni-hamburg.de/1/daten/ocean/ar5-slr.html
http://www.globcolour.info/


was fitted through the pixels at each location in the stack. The regression model 

took the form:  

𝑦 =  𝛼 +  𝛽1𝑚𝑜𝑛𝑡ℎ + 𝛽2𝑦𝑒𝑎𝑟 

The aim was to determine the direction (positive or negative) of the β2 coefficient to 

evaluated increases or decreases in sediment availability across the 20 years of 

data. The month variable was included to correct for missing values. The output 

of the regression model was masked to only return values where the overall 

model and the regression coefficient for β2 were significant at p <= 0.05. The F 

value for the overall model was assessed against a critical value of 3.07376290 

which equates to p = 0.05 for F2,117 and the t value for β2 assessed against a 

critical value of ±1.98044759 which equates p = 0.05 for t117. The degrees of 

freedom for F and t were selected for the worst-case scenario of only 120 images 

in the image stack. The sedimentary class of the mangrove patches was 

calculated from the mean inorganic suspended particulate matter concentration 

layer. One hundred and sixty-seven training locations of known typological 

(riverine or non-riverine) and sedimentary (terrigenous or carbonate) status 

were identified from the literature or by an expert working group. The 

approximate geographic position of these training locations was determined. The 

training locations were imported into ArcGIS, location outside a 10km buffer 

around the GMW maximum extent layer were removed (n = 15). Following Balke 

and Friess (2016) we determined the sediment regime (in our case inorganic 

suspended particulate matter concentration rather than total suspended matter) 

and M2 tidal amplitude of the site. M2 tidal amplitude data used was as above 

with the value nearest to the training location was calculated. The data were 

imported into R and riverine (n = 70) sites were removed from the data set. The 

remaining 82 sites were used to predict whether a site was terrigenous or not 

based on its M2 tidal amplitude and mean inorganic suspended particulate 

matter concentration. The data was modelled using a binomial generalized linear 

model with a logit link. For the 6285 typological units, riverine and deltaic 

mangroves were classed as terrigenous, with the model used to classify the 

lagoonal and fringing mangroves. The mean inorganic suspended particulate 

matter concentration value nearest to the mangrove typology centroid was 

calculated and this in combination with the M2 tidal amplitude value and the 

model coefficients was used to define whether a site was terrigenous of 

carbonate. To determine the trends in inorganic suspended particulate matter 

concentration the β2 value layer was imported into ArcGIS. Slope β2 values <= 0 

were reclassified to -1 and values > 1 to 1. A point was placed in the centre of 

each remaining raster cell, with the point value representing the positive (+1) or 

negative (-1) slope. The number of positive and negative points in a 50km buffer 

around each typological unit’s mangrove extent was then calculated. Terrigenous 



typological units were deemed to have a positive or negative trend in inorganic 

suspended particulate matter concentration if there were at least 20 cells with 

significant trends and 75% of the significant trends were in the same direction.   

e. Time Since Loss - Areas that have been cleared of mangroves more recently may 

have a higher restoration potential. Time since loss was calculated using the 

Maximum Mangrove Area in the Last 20 Years dataset (union of Global 

Mangrove Watch mangrove extents from 2007, 2010, and 2016). The loss was 

based on the most recent change from presence to absence and could be either 

2007, 2010 or 2016. The timing of the loss was the timestep (either 2007, 2010, 

2016) in which the most loss had taken place in each typological unit. 

f. Median Patch Size – Area of Loss was calculated using the Maximum Mangrove 

Area in the Last 20 Years dataset (union of Global Mangrove Watch mangrove 

extents from 2007, 2010, and 2016). Areas of loss were defined as extents within 

that union where no mangroves existed in 2016. The areas of loss were merged 

into single extent and then disaggregated into individual patches independent of 

the timing of that loss. The area of these patches was calculated in km2, and the 

number of patches per typological unit determined. The area and the number of 

patches was used to calculate the mean loss patch size in each typological unit. 

Mean loss patch size was categorised using a k-means cluster (Hartigan & Wong 

1979) in R. Given the extreme positive skew of the data, prior to analysis the 

mean loss patch size values were logged. The number of clusters was a priori set 

to three to represent small, medium and large mean patch sizes. The k-means 

cluster categorised 1610 typological units as having a small (0.0005 – 0.0022 

km2), 2734 typological units as having a medium (0.0023 – 0.0074 km2) and 1288 

as having a large (0.0075 – 0.8903 km2) mean loss patch size.  

g. Proportion of lost mangrove contiguous with extant – Patches of loss 

contiguous with remaining mangrove areas may benefit from greater natural 

regeneration. Area of Loss was calculated using the Maximum Mangrove Area in 

the Last 20 Years dataset (union of Global Mangrove Watch mangrove extents 

from 2007, 2010, and 2016). Areas of loss were defined as extents within that 

union where no mangroves existed in 2016. The areas of loss were merged into 

single extent and then disaggregated into individual patches independent of the 

timing of that loss. The loss patches were intersected with the GMW 2016 extent 

to find the percentage of loss mangrove that was contiguous with extant 

mangrove patches. The percentages were grouped into deciles.   


